
CRSX Howto

Kristoffer Rose
IBM Thomas J. Watson Research Center

http://www.research.ibm.com/people/k/krisrose

Abstract

CRS stands for Combinatory Reduction Systems
which is a powerful rewriting formalism invented by
J. W. Klop [2, 3]. The idea of CRS is to allow rewrite
rules that support matching of variable binding con-
structs and substitution as part of rewrite steps, col-
lectively known as higher-order rewriting. CRSX
implements CRS with a number of extension to fa-
cilitate using CRS for writing compilers and similar
transformation systems.
This HOWTO explains how to use CRSX. The

latest version of this document1 can be found at
http://crsx.sf.net along with some examples of
use and all source code, distributed under the terms
of the Common Public License version 1.0.

1 Quick start guide

Get the latest crsxV.zip file (this guide assumes V =

7) from http://sourceforge.net/projects/crsx.
Unzip it to obtain the crsx directory and change into
that directory. Run the command

java -jar crsx.jar
rules=samples/derivation/derivation.crs.html
term="D[λx.Ln(x+1)]"

(on a single line, substituting your proper Java 5+
execution command), and check that the following is
output:

(λ x . 1 / (x + 1))

This was using a CRS for symbolic derivation to
prove that the derivative of the function with term
�x.Ln(x+1) is �x.1/(x+1), i.e., that the derivative
of the function ln(x + 1) (of x) is 1

x+1
. The system

is presented in Section 3.2.
1This is revision 1.39 of April 14, 2010.

Contents
1 Quick start guide 1

2 Gentle introduction 1
2.1 Terms . 1
2.2 First order rewriting 2
2.3 Higher order patterns 3
2.4 Higher order rewriting 3
2.5 Syntactic convenience 4
2.6 Running CRSX 5

3 Examples 5
3.1 � Calculus 5
3.2 Symbolic Differentiation 5
3.3 CPS Transform 7

4 Manual 7
4.1 Lexical conventions 7
4.2 Term Syntax 8
4.3 Normalization 9
4.4 Expressions 9
4.5 Directives 10
4.6 On CRSX’s notation 11
4.7 Command line 11
4.8 Missing . 12

2 Gentle introduction

Here we’ll introduce CRS terms, first order rewrit-
ing, meta-terms, and higher-order rewriting, in-
cluding the fundamental rules for composing and run-
ning rewrite systems. The reference manual below
will give a fuller account of the details.

2.1 Terms

Here are some sample basic terms in CRSX notation:

1. +[2,2]

2. Cons[1, Cons[2, Cons[3, Nil]]]

Page 1

3. �[x.@[x,x]]

4. @[�[foo.foo], S]

The examples illustrate some basic rules:

� Capitalized words (such as Cons and Nil), num-
bers (such as 2), and most other symbols (such
as +, @, and �) are constructors which take an
optional ordered (or positional) parameter list
of subterms in immediately following []s. Spe-
cial symbols are actually written as HTML entity
references, e.g., � is really written as λ.

� Uncapitalized words (such as x and foo) denote
variables.

� Constructor can take special binding parame-
ters which combine some variables followed by
a . (dot) and the subterm in which this variable
is “bound,” i.e., is allowed to occur. The third
term should be read as “a �-construction with a
single subterm that binds the variable x (before
the .) and only contains a single reference to x.”

Variables are really useful when defining binding
structures, however, since the notation is completely
general it needs to use explicit scoping which is some-
times different. Many languages, for example, include
a grammar production like the following,

E ::= let x := E1 in E2

where the scope of the variable, x, is the let “body”,
E2. Such a construct would most naturally be mod-
eled by CRS terms like Let[E1; x:E2], placing the vari-
able binding such that the scoping is explicit.

2.2 First order rewriting

Rewriting is first order (term) rewriting if it does
not involve manipulation of any structures that in-
clude their own bound variables. Here is a collection
of rules that implement addition with unary numbers,
so-called Peano arithmetic:

Peano[(
PlusS: +[S[#1],#2] ! S[+[#1,#2]] ;
PlusZ: +[Z,#2] ! #2 ;
TimesS[Copy[#2]]: �[S[#1],#2] ! +[�[#1,#2],#2] ;
TimesZ[Discard[#2]]: �[Z,#2] ! Z ;

)]

The Peano system illustrates these conventions:

� The rule system itself is written as a construction
where the name does not matter but the single
argument should be a ()-enclosed sequence of
rules each terminated by ; (semicolon).

� Each rule has the form

name[options] : pattern ! contraction

where the name should be a constructor and the
pattern and contraction should be terms. (The
options are discussed below, and the ! is actu-
ally written as the → HTML entity.)

� The pattern of a rule must be a construc-
tion term, in this case all the rules rewrite +-
constructions.

� Names containing # are special “pattern vari-
ables,” or meta-variables, that are used to
match arbitrary subterms at the indicated po-
sition.

� Rules should generally contain each meta-
variable exactly once in the pattern and once in
the contraction. If a meta-variable occurs twice
in the contraction, then what it matches is effec-
tively copied, which should be indicated by giv-
ing the rule name a special Copy option as shown
for the TimesS rule. If a meta-variable is used in
the pattern but not in the contraction, then what
it matches is effectively discarded, which must
be indicated, as shown for the TimesZ rule.2

The Peano system can rewrite

+[S[S[Z]],S[S[Z]]]
!Peano-PlusS S[+[S[Z],S[S[Z]]]]
!Peano-PlusS S[S[+[Z,S[S[Z]]]]]
!Peano-PlusZ S[S[S[S[Z]]]]

(where each term has the relevant redex underlined
and each rewrite arrow is annotated with the full
name of the used rule), corresponding to the fact that
2+2 = 4. The final term cannot be further rewritten
and is called a normal form ; the default for CRSX
is to normalize by rewriting until a normal form is
reached, i.e., no further possibilities for rewriting ex-
ist.
Notice that the order of these rewrites is not

deterministic: each step is only guaranteed to lo-
cate some rewritable subterm (or “redex”) and con-
tract with the appropriate rule. So if provided

2Requiring such pedantry may seem like overkill but catches
an amazing number of errors in rules.

Page 2

with term �[+[S[Z],S[Z]],+[S[Z],S[Z]]], either of the
+-subterms may be subject to the first rewrite. If
the first is chosen, the rewrite with the PlusS rule
gives +[�[+[Z,S[Z]],+[S[Z],S[Z]]],S[Z]], which permits
rewriting of either of the three +-subterms, etc.

For some rule systems there are terms where the
choice of which rule to apply can influence the normal
form, or even whether a normal form exists at all: we
detail later the actual rules used and how to deal with
such non-confluent systems.

Finally, functional programmers should notice that
rules are applied freely under binders. So the above
system can also rewrite

Let[Z, v.+[S[S[Z]],S[S[v]]]]
!Peano-PlusS Let[Z, v.S[+[S[Z],S[S[v]]]]]
!Peano-PlusS Let[Z, v.S[S[+[Z,S[S[v]]]]]]
!Peano-PlusZ Let[Z, v.S[S[S[S[v]]]]]

where the final term is the Peano normal form so far
since the Peano system as presented here has no rules
for substituting the value Z for the variable v.

2.3 Higher order patterns

The CRS formalism adds some special terms to first-
order terms, called meta-applications, which gener-
alize meta-variables explained above by adding pa-
rameters; the generalized forms are called meta-terms
when the distinction needs to be made. Here is
a meta-term with two meta-applications, a simple
meta-variable, #1, as above, and a proper meta-
application pattern, #2[x]:

Let[#1, x.#2[x]]

This is actually a pattern that will match Let-terms
discussed above, where

� the constructor must be Let,

� there must be exactly two subterms,

� the first subterm cannot have any bindings and
will be matched by #1,

� the second subterm must have a single variable
binder which will be matched by x, and

� the second subterm under the binder can be any-
thing wherein the variable matched by x may oc-
cur, and is matched by #2 where we keep track of
all the actual occurrences of the bound variable.

Meta-terms with variable bindings are used to form
higher-order rewrite rules. Think of #2[x] as a way
to express a matched subterm where we keep track of
all references to occurrences of the bound variable x.

Specifically, we say that the pattern Let[#1,
x.#2[x]] matches the redex Let[Z, v.S[S[S[S[v]]]]] by
mapping the individual components as follows:

� the meta-variable #1 in the pattern maps to Z
in the redex;

� the bound variable x in the pattern maps to v in
the redex;

� the meta-variable #2 in the pattern maps to a
so-called substitute function generated from the
redex, which we can write as [v]7!S[S[S[S[v]]]], or
simply #2[v]7!S[S[S[S[v]]]].

In CRS such a collection of components for a succesful
match is called a valuation. The general rule is that
in higher order patterns all meta-applications must
apply a meta-variable to the list of all the distinct
bound variables. (There are exceptions discussed
later.)

2.4 Higher order rewriting

CRSX higher-order rewriting is rewriting with rules
that involve binders and substitution, which here
merely means applying substitute components ob-
tained as discussed above.

One such rule would be the one for evaluating a
“Let” expression from above:

Let[Copy[#1]] : Let[#1, x.#2[x]] ! #2[#1] ;

The Let rule is composed as follows:

� The name is Let, and we have indicated that
what matches #1 may be copied by rewriting
(see below).

� The pattern is the part that follows the :, which
matches #1 as well as #2 where we furthermore
keep track of all occurrences of the actual vari-
able that matched x, as discussed above.

� The contraction follows the ! and constructs a
new term by exploiting the way we kept track
of occurrences of the bound variable matched by
x to substitute all occurrences of the variable:
#2[#1] means “a subterm like what matched #2

except we have inserted a copy of #1 instead

Page 3

of the variable that occurs in all the places we
tracked.”

The replacement of a variable in one part of the con-
traction with copies of another matched subterm is
what we call substitution, and when a term can be
used for substitution we must permit that it is copied
with a Copy[] annotation on the rule, as shown.
If we add the Let rule to the Peano system then it

can rewrite

Let[Z, v.S[S[S[S[v]]]]] !Peano-Let S[S[S[S[Z]]]]

This works by first constructing the valuation for the
match above, and then generating the contraction
#2[#1] which amounts to substitute (a copy of) what
matched #1, namely Z, in every position marked by
v in S[S[S[S[v]]]]. (Or, formally, we have applied the
meta-level function [v] 7!S[S[S[S[v]]]] to the argument
Z.)
In order for contraction to be well defined, meta-

applications in the contraction should have the same
arity as the corresponding meta-application with the
same meta-variable in the pattern.

In general a CRSX rewrite system takes the form

name[(rule...rule)]

where the name is some constructor naming the sys-
tem, and each rule in turn has the form

name[options] : pattern → contraction ;

where the individual components have been discussed
above.

2.5 Syntactic convenience

The basic term notation turns out to be rather
klunky, especially for large terms, so the CRSX sys-
tem permits using syntactic sugar.
Specifically, the system has the following built in

abbreviations:

� Parentheses can be freely used to make grouping
explicit.

� Simple concatenation, as in “1 2 3”, is short
for “applicative” left-recursive use of the special
constructor @, i.e., “(1 2 3)” is the same as
“@[@[1,2],3]”.

� Infix use of “;” (semicolon) is really short
for right-recursive use of the special sym-
bol $Cons with the additional rule that

any empty segment is represented as
$Nil. So, for example, “(1;2;;3;)” becomes
“$Cons[1,$Cons[2,$Cons[$Nil,$Cons[3,$Nil]]]]”.
(This also explains how entire rewrite systems
are actually terms subject to rewriting.)

� Finally, concatenating a constructor with some
binders has special meaning: “C x y z.t” is short
for “C[x.C[y.C[z.t]]]”, i.e., the constructor is in-
serted for every nested binder. So to get a
constructor over a single argument with three
binders one must write “C[x y z.t]”.

The parser also permits some use of HTML markup,
notably,

� most tags are ignored, specifically all upper case
tags;

� a few elements, notably blockquote and head-
ings, are skipped in their entirety so useful for
comments;

� groups of entities, such as “λβ”,
are permitted constructors;

� subscripts such as “₁”, are permit-
ted at the end of constructors, variables, and
meta-variables;

� the “ ” and “ ” entities are con-
sidered white space;

� as a special case symbols written on the form
<var>x</var> and X are considered
variables and meta-variables, respectively, and
the single letter tags like C make con-
structors;

with these conventions we can express the canonical
higher order rewrite system – the � reduction of the
� calculus – with the following text:

<u>Λβ</u>[(
β[Copy[M_{<var>x</var>}]]:
((λ<var>x</var>.M[<var>x</var>])
N)

→ M[N]
;)]

which, in a browser, will display nicely as

��[(�[Copy[N]]: ((�x .M [x]) N) ! M [N] ;)]

(We return to the � calculus in some detail in the
examples section below.)

Page 4

2.6 Running CRSX

The basic command line interface for CRSX is the
class net.sf.crsx.run.Crsx, which is run in the default
configuration by the Java invocation command

crsx rules=crs-file term=term

where crsx is the command – typically java -jar
crsx.jar, the crs-file should be a file containing
a CRSX rewrite system as the ones above. Several
other parameters are possible; in each case the entire
key=value must be passed as a single command line
argument.

� input=term-file – load the term to rewrite from
a file.

� verbose=number – set the verbosity to the num-
ber, with higher numbers showing more output.

� lax – change some errors into warnings.

(Many more commands are explained later.)

3 Examples

Some complete examples.

3.1 � Calculus

A more complete version of the type-free � calculus is
provided by the samples/lambda/lambda.crs.html
file, which contains the text

<HTML>
Λβη[(

β[Copy[#₂]] :
((λx.#₁[x]) #₂)
→
#₁[#₂] ;

η[Weak[#]] :
(λx.#[] x)
→
#[] ;

)]
</HTML>

which appears in browsers as

���[(

� �[Copy[#2]] : ((�x.#1[x]) #2) ! #1[#2] ;

� �[Weak[#]] : (�x.#[] x) ! #[] ;

)]

First we remark that all the HTML tags in upper case
are ignored, allowing for the formatting of the rules.
Second, the system is named ��� and contains two

rules, � and �.
The � rule is the classical application evaluation

that rewrites an application (with the implicit con-
structor @) of a � subterm to an argument sub-
term with the corresponding substitution. Let us
work through how it rewrites the term ((�a.a)(�b.b))
(which is really @[�[a.a],�[b.b]]): Matching con-
structs the valuation with #1[a]7!a and #2 7!�b.b.
The contraction of #1[#2] is then constructed by ap-
plying the “function” [a]7!a to the “argument” �b.b,
which gives the result �b.b.
The � rule is the classical extensionality reduction

that rewrites a � term that contains an trivial appli-
cation of the following special form:

� the function part matches #[], which is restricted
to match subterms where the bound variable
(matched by x) does not occur – this is so be-
cause if it could occur then we would have writ-
ten #[x], and

� the argument part is a simple occurrence of the
bound variable x.

Since the bound variable matched by x does not occur
in the function part of the application matched by the
� rule, there is no need to substitute anything for it
in the contraction, as no occurrences can “escape” in
this way. So the underlined part of

�[y.[�[z.@[@[y,y],z]]]]

is an �-redex because it matches the pattern of
the � rule (# can match @[y,y] where there are
no zs, the variable that corresponds to x), and the
term rewrites to �[y.[@[y,y]]]. In contrast, the term
�[y.�[z.@[@[y,z],y]]] does not match the rule.

3.2 Symbolic Differentiation

A classic example of a higher-order rewrite system is
symbolic differentiation based on the rules of Knuth
[4, p.337]. In CRS notation we write Knuth’s Dx(e),
where e can contain free occurrences of x, as D[x.e,x]
(notice that the two occurrences to x do not refer to
the same variable: the first is bound in e, the sec-
ond free). The rules are in Figure 1 following these
conventions:

Page 5

KnuthDerivation [(

Rules for symbolic differentiation based on a system from The Art of Computer Programming.

Top-level derivor

Function: D[�x.E [x]] ! (�x.D[y.E [y], x]) ;

Standard function derivatives

Ln: D[Ln] ! (�x.1/x) ; Exp: D[Exp] ! Exp ; Sin: D[Sin] ! Cos ; Cos: D[Cos] ! (�x.0 � (Sin x)) ;

Arithmetic derivatives

Plus[Copy[X]]: D[x.E1[x] + E2[x], X] ! (D[x1.E1[x1], X] + D[x2.E2[x2], X]) ;
Minus[Copy[X]]: D[x.E1[x] � E2[x], X] ! (D[x1.E1[x1], X] � D[x2.E2[x2], X]) ;
Times[Copy[E1,E2,X]]: D[x.E1[x] � E2[x], X] ! ((D[x1.E1[x1], X] � E2[X]) + (E1[X] � D[x2.E2[x2], X])) ;
Divide[Copy[E1,E2,X]]: D[x.E1[x] / E2[x], X] ! (((D[x.E1[x], X] � E2[X]) � (E2[X] � D[x.E1[x], X])) / (E2[X] � E2[X])) ;
Power[Copy[E1,E2,X]]: D[x.E1[x] ^ E2[x], X] ! ((E2[X] � (E1[X] ^ (E2[X] � 1))) � D[x.E1[x], X]) ;

Composite function derivatives

Constant[Weak[E],Discard[E ,X]]: D[x.E [], X] ! 0 ; Identity[Discard[X]]: D[x.x, X] ! 1 ;
Chain[Weak[E1],Copy[E1,E2,X]]: D[x.E1[] E2[x], X] ! ((D[E1] E2[X]) � D[x.E2[x], X]) ;

Function simplification

�[Copy[E1]]: ((�x.E2[x]) E1) ! E2[E1] ; �[Weak[E]]: (�x.E [] x) ! E [] ;

Arithmetic simplification

Plus-0-left: (0 + E) ! E ; Plus-0-right: (E + 0) ! E ;
Times-0-left[Discard[E]]: (0 � E) ! 0 ; Times-0-right[Discard[E]]: (E � 0) ! 0 ;
Times-1-left: (1 � E) ! E ; Times-1-right: (E � 1) ! E ;
Frac-1-under: (E/1) ! E ; Frac-0-over[Discard[E]]: (0/E) ! 0 ;
Frac-1-over-times: ((1/E1) � (1/E2)) ! (1/(E1 � E2)) ;
Double[Comparable[E]]: (E + E) ! (2 � E) ; Square[Comparable[E]]: (E � E) ! (E ^ 2) ;)]

Figure 1: Symbolic differentiation CRS.

� Functions are written “curried”, i.e., using the
built-in application operator.

� Primitive operators are written in traditional in-
fix notation, which in CRSX in reality corre-
sponds to applications.

� Numbers are written as themselves.

� The Constant rule exploits the check for free vari-
ables to verify that the dependant variable can-
not occur in the first subterm of D which implies
that the subterm is constant.

� The Double and Square rules introduce a new op-
tion that we have not seen before: Compara-
ble[E] means that the meta-variable E can be
used more than once in a pattern, and then the
pattern only matches when the matched sub-
terms are identical.

The command from the quick start guide (now with
HTML rendering but still on one line)

crsx rules=samples/derivation/derivation.crs.html
term="D[�x.Ln(x+1)]"

reveals the file name and prints the result

(� x . 1 / (x + 1))

Similarly,

java -jar crsx.jar term="D[�x.Sin(x � x)]"
rules=samples/derivation/derivation.crs.html

prints the result

(� x . Cos (x ^ 2) � (2 � x))

which is a slightly different way to write the usual
derivative 2x cos(x2).

Page 6

One-pass Call-by-Value CPS transform
One-pass Call-by-Value CPS transformation from Danvy & Rose (RTA ’98).

CbvCps[(

Top-level rule.

Top : CBV[#1] ! "[� k.CBV[#[#1], � m.@[k,m]]] ;

Derivor.

@ : CBV[@[#1, #2], � k.#3[k]] ! CBV[#1, �m.CBV[#2, �n.@[@[m,n],�a.#3[a]]]] ;
�[Copy[#1]] : CBV[�x.#1[x], � k.#2[k]] ! #2[�x k.CBV[#1[x], � m.@[k,m]]] ;
Var[Free[v]] : CBV[v, � k.#[k]] ! #[v] ;

Drop

#-App : #[@[#1,#2]] ! @[#[#1],#[#2]] ; #-Abs : #[�x.#[x]] ! (� x.#[#[x]]) ; #-Abs1 : #[� x.#[x]] ! (� x.#[#[x]]) ;
#-Var[Free[x]] : #[x] ! x ;

Lift

"-App : "[@[#1,#2]] ! @["[#1],"[#2]] ; "-Abs : "[�x.#[x]] ! (�x."[#[x]]) ; "-Abs1 : "[� x.#[x]] ! (�x."[#[x]]) ;
"-Var[Free[x]] : "[x] ! x ;
)]

Figure 2: One-pass call-by-value CPS transform CRS.

3.3 CPS Transform

The one-pass “call-by-value” CPS transform [1] is
shown as a CRS in Figure 2. The command

java -jar crsx.jar term="CBV[�x.x]"
rules=samples/cps/cbv.crs.html

will print

(� k . k (� x k-1 . k-1 x))

The system demonstrates the following.

� The special option Free[x] used, for example, in
the Var rule, permits a pattern to contain a free
variable that will match any variable in the re-
dex that is not matched by a bound variable
in the pattern (this enforces what is known as
Barendregt’s “variable convention”).

� In the � rule the substitution inserts a copy of
the whole of �x k.CBV[#1[x], � m.@[k,m]] and
since #1 is contained inside we must declare it
copyable.

Also note that we sometimes use the explicit appli-
cation form @[...] instead of the implicit one.

4 Manual

This section gives reference information for the CRSX
higher-order rewriting engine in the conventional bot-
tom up fashion.3

4.1 Lexical conventions

The standard CRSX parser generates tokens from the
input character stream as follows.

White space. White space characters, most HTML
tags (specifically everything between < and > not
otherwise mentioned below), and the following
complete HTML “comment” structures:

<!--...-->
<h1>...</h1>, <h2>...</h2>, ...
<head>...</head>
<blockquote>...</blockquote>
<address>...</address>

Case and spaces matter, so tags like <H1> or
<h1 class=foo> are just skipped and not rec-
ognized as the above cases; indeed in each case

3The manual is still quite sketchy, and needs serious expan-
sion.

Page 7

the skipping is a simple search for the literal end
tag, so nesting does not work.

Reserved characters. {}[]().,:; (braces, brackets,
parenthesis, period,comma, colon, and semi-
colon) are always separate tokens, unless in-
cluded in the white space forms above.

Tokens. The basic rules for forming tokens are that
they consist of parts that are joined with the
connector character - (dash). The first part de-
termines the kind of token. Parts are either iden-
tifiers (including $_ as letters), numbers, strings
(with XML conventions), concatenations of the
symbols @^*+-‘|/\%!?$=:, or HTML markup
<m>. . . </m> where m is one of i, b, u, tt,
and q. In addition, parts can be “embellished”
with any number of trailing _{. . .} and
^{. . .}.

Variables. If the first part is an identifier starting
with a lower case letter, or it has the form
<var>. . . </var>, then the token is a variable.

Metavariables. If the first part is an identifier that in-
cludes the special symbol #, or it has the form
. . . , then the token is a metavariable.

Constructors. In all other cases the token is a construc-
tor.

Embedded terms. Embedded terms are lexically one
unit (passed to an external parser). They take
one of the following forms:

{{...}}, [[...]],
<code>...</code>, <pre>...</pre>

If the involved parser supports more than one
nonterminal then one can indicate that with a
special wrapper like

%NonTerminal[<code>...</code>]

(The precise details are in the source file Classic-
Parser.jj.)

4.2 Term Syntax

The syntax for CRS terms and meta-terms is out-
lined in Figure 3. The notation is usual extended
BNF (more precisely that of JJCRS described in the
companion “JJCRS HOWTO” [5]) with the following
remarks:

Term ::= hvari
| (Props)? hconi ("[" (BList)? "]" | hvar i+ "." Term)
| (Props)? hmvari "[" (List)? "]"
| "(" Sequence ")" | hembeddedi .

Props ::= "{" (hmvari ";")? (Prop ("," Prop)�)? "}" .
Prop ::= hconi ":" Term | hconi | "¬" hconi
| hvari ":" Term | hvari | "¬" hvari .

BList ::= BTerm ("," BTerm)� .
BTerm ::= (hvar i+ ".")? Term .

List ::= Term ("," Term)� .

Sequence ::= (Application)? (";" (Application)?)� .
Application ::= (Term)+ .

Figure 3: CRSX term syntax.

� The precise lexical form of variables, meta-
variables, and constructors, were given with the
lexical conventions above.

� Parentheses are for convenience: all terms can
be written without ()s, ;, and concatenation, in-
stead using the @, $Cons, and $Nil constructors
using the equivalences

t0 t1 � � � tn � @[: : :@[t0; t1]; : : : ; tn]

c v1 v2 � � � vn : t � c[v1:c[v2 : : : c[vn:t] : : :]]

(t) � t

t1; : : : ; tn; t � $Cons[t1; : : : $Cons[tn; t] : : :]

() � $Nil

(t;) � t; ()

(; t) � (); t

In addition, two special application forms are
translated as follows (used below):

t0 : t1 → t2 � $Rule[t0; t1; t2]

t1 → t2 � $Rule[t1; t2]

� A variable occurrence v is bound if it occurs in-
side the body b of a binder term (BTerm) like
v.b, otherwise it is free.

� The special Props properties prefix is an exten-
sion to allow easy manipulation of annotations.
In proper terms only the c = t form is allowed
and only on constructions; in patterns we fur-
thermore allow the leading meta-variable for “all
the properties” as well as the special form :c

Page 8

which means “there is no c annotation” (with :

being ¬ in HTML).

� An embedded term is a term in a foreign nota-
tion where a special parser has been setup; such
are typically generated with the JJCRS parser
generator [5] accompanying CRSX.

4.3 Normalization

When the CRSX interpreter is asked to normalize a
term, it follows the following strategy, starting with
the root term.

1. Reduce the current term as much as possible.

2. Reduce each of the children in turn (recursively)
as much as possible.

3. If any child was actually modified then start over
(otherwise reduction is done).

This strategy is implemented in the normalize
method of the GenericCRS class.

4.4 Expressions

Several terms have special meaning when “evaluated”
by directives and rewriting, described below. Notice
that these are not needed for most rewrite systems,
indeed one can argue that using these changes your
rewrite system into a program in a more traditional
sense.

Arithmetic

The following expressions are evaluated by

1. evaluating the arguments, and

2. if provided with integer constant arguments, re-
place with the constant corresponding to the re-
sult of the arithmethic expression.

$[Plus, i1, i2, ...]
$[Minus, i1, i2]
$[Times, i1, i2, ...]
$[Div, i1, i2]
$[Mod, i1, i2]

Comparison

The following expressions are evaluated by

1. evaluating the arguments, and

2. if provided with constant arguments, compare
them appropriately and replace with either True
or False.

$[Equals, c1, c2]
$[NotEquals, c1, c2]
$[LessThan, c1, c2]
$[LessThanOrEquals, c1, c2]
$[GreaterThan, c1, c2]
$[GreaterThanOrEquals, c1, c2]

Symbol manipulation

The following expressions operate on the constructor
symbol of constants.

$[:, c1, c2, ...]
$[Length, c1]
$[Index, c1, c2]
$[Substring, c1, c2, c3]
$[Replace, c1, c2, c3]

Term construction

The following expressions are evaluated by

1. evaluating the arguments, and

2. if provided with constant name argument,
generate the appropriate construction, meta-
application, or variable occurrence, term.

$[C, name, t...]
$[M, name, t...]
$[V, name]

Matching

$[Match, #p, #t]
$[NotMatch, #p, #t]
$[MatchRegex, #r, #t]
$[IsInteger, #p]

Property matching

$[NamedProperty, #name, #value, #t]
$[NotNamedProperty;, #name, #t]
$[VariableProperty, #name, #value, #t]
$[NotVariableProperty;, #name, #t]
$[CollectsProperties, #name, #t]

Parsing

$[Parse, #filename]
$[ParseURL, #parser, #category, #url]
$[ParseResource, #parser, #category, #name]
$[ParseText, #parser, #category, #text]

Page 9

Evaluation

$[Script, #t]
$[If, #test, #true, #false]
$[Get, name-or-index[, fallback]]
$[Print, #term [, #result]]
$[Dump, #prefix, #term]
$[Error, #message [, #name]]
$[Trace, #message, #value]

4.5 Directives

A directive is a term of one of the following special
forms. Notice that except for the first two, nesting
and rules, these are not needed for most rewrite sys-
tems, indeed one can argue that using these changes
your rewrite system into a program in a more tradi-
tional sense.

Nesting

(directive ;...; directive ;)
constructor[(directive ;...; directive ;)]

Process the nested directives. If the constructor form
is used then the name of all embedded rules will have
their name prefixed with the constructor symbol.
The outermost such naming is also used as the name
of the CRSX.

Rule

$Rule[pattern, contraction]
$Rule[name[options], pattern, contraction]

Add rule to the CRS being built.

� name : name to assign to the rule.

� options : properties of rules: list of rule excep-
tions:

– Free[v,. . .] –

– Fresh[v,. . .] –

– Meta[#,. . .] –

– Leaf –

– Share[#,. . .] –

– Copy[#,. . .] –

– Discard[#,. . .] –

– Weak[#,. . .] –

– Comparable[#,. . .] –

� pattern : must be a construction where all
contained meta-applications have only differ-
ent bound variables as subterms (allowing
C[x.y.#[x,y]] but not C[x.#[x,x]]).

� contraction of the corresponding pattern: all
free variables in the contraction must occur free
in the pattern and every meta-variable in the
contraction must occur with the same arity in
the pattern.

Term

$Term[term]

Send term to the context sink. The directive is first
evaluated.

Normalization

$Normalize[term]

Normalize the term with the constructed CRS and
send the result to the context sink. The directive is
first evaluated.

Environment

$Set[name]
$Set[name, directive]

Process directive with the context sink set to store
the result term in the name context variable. The
directive is first evaluated.

Message

$Message[term]
$Message[term, write-file]

Append printable form of term to write-file (defaults
to ’’ corresponding to System.out). The directive is
first evaluated.

Verbosity

$Verbose
$Verbose[verbose]
$Verbose[verbose, write-file]

Set verbosity to the integer level verbose (defaults
to 1), sending the verbose messages to the write-file
(defaults to ’’ corresponding to System.out). The
directive is first evaluated.

Page 10

Meta

$Meta[rules]

The subsequent rules will be rewritten with the rules
before being loaded.

Dispatchify

$Dispatchify

Transform the rules into constructor system form,
necessary for compiling into plain code.

4.6 On CRSX’s notation

When the rewrite and normalize commands are used
then the current CRS rules are actually used to
change the current term. One rule is applied at the
time, anywhere in the term, and the affected subterm
(redex) is replaced with the result of the rewrite.

At present there is no way to control the strategy
used by the rewrite engine: the rewrite and normalize
commands will pick seemingly random redices in an
unspecified order.

Here are the differences between CRSX rewriting
and the original CRS work [2, 3]. The extensions
described here are mostly from [6].

� Meta-variables are written with # instead of re-
serving the letter Z.

� CRSX uses square brackets [] instead of round
parentheses for all basic CRS constructs (reserv-
ing the round ones for applicative notations).

� Variable binders are written in �-calculus style
with a . (dot) instead of square brackets; further-
more, variable binders are restricted in CRSX to
only occur on construction parameters. A sub-
tle consequence of this is that variable binding is
not “curried” because the pattern C[x.#[x]] will
not match, for example, the term C[x y.x].

� Free variables are allowed in patterns where they
will only match other variables. Such “free vari-
able patterns” should not be used as arguments
to meta-application patterns, however.

� We have extended CRS terms with properties
and more importantly property patterns. They
work as follows:

First, a construction term with a “property pre-
fix” has the form

fC1:v1; : : : ; Cn:vngC[b1; : : : ; bm]

where the Ci are property name constructors,
the vi are the corresponding property value
terms (and the bi are the usual construction sub-
terms with optional binders).

A construction with properties can be used as
a pattern, where it matches when the pattern
and term construction have at least the same
property names where the corresponding prop-
erty values match.

Second, a property pattern involves prefixes
of the form f#;:C1gp, where the special :C1

means that matching terms can not have the
property C1, and in addition we make # a refer-
ence to all the properties the matched term actu-
ally had. p can be either a construction pattern
or a meta-variable.

In the rule contraction we can then add stuff like
f#;C1:t1;:C2gt which means “on the result of
contracting t add all the properties remembered
as # but then replace the value for C1 with the
contraction of t1 and remove the C2 property, if
any”.

� Finally, we have extended CRS with con-
stant matches and computing contractions, all
through the special term form $[operator, . . .].

The extensions should all be manageable as rule
schemas, i.e., infinite enumerations of rules in a sys-
tematic way, but a formal treatment has not yet been
undertaken.

4.7 Command line

This summarizes all the possible command line argu-
ments. The first four are built in:

� script=script-name – use script-name, which
can be a predefined name or a URL, as master
script instead of default.

� factory=class – instantiate class as Factory,
which it must implement. (Defaults to Gener-
icFactory unless the grammar option is used.)

� grammar=grammar-configuration – use the in-
dicated ANTLR grammar configuration; see

Page 11

GenericFactoryTreeAdaptor for details (which is
also set as the default Factory).

� output=file – send output from processing to
file.

The remaining command line arguments are imple-
mented by the default script and thus only supported
in this way if the script option above is not used:

� rules=system – use CRS rules from the system,
which may either be a resource name or a URL,
to normalize the input term.

� input=url – get the input term from the url.
(Cannot be combined with term=. . .).

� term=term – use input term. (Cannot be com-
bined with input=. . .).

� category=category – use the non-terminal cat-
egory for the root term. As a special case, cat-
egory can be the value ?xml, which parses the
special XML format of SAXSink.

� verbose=number – set the verbosity of normal-
ization to number. (Default is 0.)

� verbose-compiler=number – set the verbosity
of rule compilation to number. (Default is 0.)

� embedded-parser=class – use the class to parse
embedded terms.

4.8 Missing

Some things are still missing:

� A better explanation of how rewriting works.

� Examples of the extensions.

� Examples of combination of several CRSX sys-
tems.

� Example of how to use the inference rule helper
system to expand inference rules to CRSX sys-
tems.

� A description of the XML format and customiza-
tions.

References

[1] Olivier Danvy and Kristoffer H. Rose. Higher-
order rewriting and partial evaluation. In To-
bias Nipkow, editor, RTA ’98—Rewriting Tech-
niques and Applications, volume 1379 of Lec-
ture Notes in Computer Science, pages 124–140,
Tsukuba, Japan, March 1998. Springer. Extended
version available as the technical report BRICS-
RS-97-46 (http://www.brics.dk/RS/97/46/).

[2] Jan Willem Klop. Combinatory Reduction Sys-
tems. PhD thesis, University of Utrecht, 1980.
Also available as Mathematical Centre Tracts 127.

[3] Jan Willem Klop, Vincent van Oostrom, and
Femke van Raamsdonk. Combinatory reduction
systems: Introduction and survey. Theoretical
Computer Science, 121:279–308, 1993.

[4] Donald E. Knuth. Fundamental Algorithms, vol-
ume 1 of The Art of Computer Programming.
Addison-Wesley, 1973.

[5] Kristoffer Rose. JJCRS howto. http://crsx.
sourceforge.net, April 2010.

[6] Kristoffer Høgsbro Rose. Operational Re-
duction Models for Functional Programming
Languages. PhD thesis, DIKU, Univer-
sity of Copenhagen, Universitetsparken 1, DK-
2100 København Ø, February 1996. DIKU
report 96/1, http://diku.dk/publikationer/
tekniske.rapporter/rapporter/96-01.pdf.

Page 12

